PyCUDA Plus is an enhanced Python library built on top of PyCUDA, designed to simplify GPU programming and execution. It provides high-level abstractions and utilities for working with CUDA kernels, memory management, and context handling, allowing developers to focus on writing efficient CUDA code without dealing with low-level details.
- Kernel Management: Compile, load, and execute custom CUDA kernels easily with the
KernelExecutor. - Memory Management: Simplified allocation and transfer of device and host memory using the
MemoryManager. - Context Handling: Seamless setup and teardown of CUDA contexts with the
CudaContextManager. - Error Checking: Built-in error detection and reporting via
CudaErrorChecker. - Utility Functions: Prebuilt kernels, NumPy support, and grid/block configuration helpers for common operations.
- Grid/Block Configuration: Automate grid and block size calculations for CUDA kernels using
GridBlockConfig. - Performance Profiling: Measure execution time of CUDA kernels with
PerformanceProfiler.
To use PyCUDA Plus, ensure the NVIDIA CUDA Toolkit is installed on your system. Follow these steps:
-
Verify Your NVIDIA GPU Compatibility
Check your GPU model's compatibility with CUDA here. -
Download the CUDA Toolkit
Visit the CUDA Toolkit download page and download the version compatible with your GPU and operating system. -
Install the Toolkit
- Follow the installation guide for your platform:
- Linux: Linux Installation Guide
- Windows: Windows Installation Guide
- Follow the installation guide for your platform:
-
Set Environment Variables
After installation, ensure the CUDA Toolkit is added to your environment variables:- On Linux:
Add these lines to your shell configuration file (
export PATH="/usr/local/cuda/bin:$PATH" export LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"
~/.bashrc,~/.zshrc, etc.) for persistent access. - On Windows:
Add the following paths to your
Environment Variables:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\<Your_Version>\binC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\<Your_Version>\libnvvp
- On Linux:
-
Verify Installation
After installation, verify the CUDA Toolkit is working correctly:nvcc --version
To compile CUDA programs and ensure compatibility with PyCUDA Plus, you need to install g++ 11 or later. The following instructions guide you through installing and setting up g++ 11 on your system.
Add the required repository to access newer versions of g++:
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get updateInstall the g++ version that is compatible with CUDA 12.x or later:
sudo apt-get install g++-11 gcc-11Use update-alternatives to switch between different versions of g++:
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 10
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-9 10
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-11 20Select g++-11 as the default version:
sudo update-alternatives --config gcc
sudo update-alternatives --config g++Follow the prompts to choose gcc-11 and g++-11.
Once you've selected the default version, verify the installation by checking the g++ version:
g++ --versionIt should show g++ version 11 or later.
If you run into issues or the version doesn't update correctly, ensure that your system is correctly pointing to the newly installed g++ version by running:
which g++This should return the path to g++-11.
To install the pycuda_plus library, run:
pip install pycuda_plusEnsure you have the following prerequisites installed:
- CUDA Toolkit
- PyCUDA
- Compatible NVIDIA GPU drivers
Creating a virtual environment and installing the required libraries
git clone https://github.com/takuphilchan/pycuda_plus.git
cd pycuda_plus
conda env create -f environment.yamlimport numpy as np
from pycuda_plus.core.kernel import KernelExecutor
from pycuda_plus.core.memory import MemoryManager
from pycuda_plus.core.error import CudaErrorChecker
from pycuda_plus.core.context import CudaContextManager
from pycuda_plus.utils.prebuilt_kernels import get_prebuilt_kernels
def vector_addition_example(N):
kernel = KernelExecutor()
memory_manager = MemoryManager() # Using the MemoryManager
context_manager = CudaContextManager()
context_manager.initialize_context()
try:
# Retrieve the vector_add kernel code from prebuilt kernels
prebuilt_kernels = get_prebuilt_kernels()
kernel_code = prebuilt_kernels['vector_add']
# Compile the vector_add kernel
kernel.compile_kernel(kernel_code, 'vector_add')
A = np.random.rand(N).astype(np.float32)
B = np.random.rand(N).astype(np.float32)
C = np.zeros(N, dtype=np.float32)
vector_add = kernel.get_kernel('vector_add')
# Allocate memory on the GPU
d_A = memory_manager.allocate_device_array(A.shape, dtype=np.float32)
d_B = memory_manager.allocate_device_array(B.shape, dtype=np.float32)
d_C = memory_manager.allocate_device_array(C.shape, dtype=np.float32)
# Copy data from host to GPU
memory_manager.copy_to_device(A, d_A)
memory_manager.copy_to_device(B, d_B)
block_size = 256
grid_size = (N + block_size - 1) // block_size
# Launch the kernel
kernel.launch_kernel(vector_add, (grid_size, 1, 1), (block_size, 1, 1), d_A, d_B, d_C, np.int32(N))
error_checker = CudaErrorChecker()
error_checker.check_errors()
# Copy the result back to host
memory_manager.copy_to_host(d_C, C)
return C
finally:
context_manager.finalize_context()
if __name__ == "__main__":
N = 1000000 # Size of the vectors
result = vector_addition_example(N)
if result is not None:
print(f"Vector addition result (first 5 elements):\n{result[:5]}")
else:
print("Error in vector addition.")import numpy as np
from pycuda_plus.core.kernel import KernelExecutor
from pycuda_plus.core.memory import MemoryManager
from pycuda_plus.core.context import CudaContextManager
from pycuda_plus.core.error import CudaErrorChecker
matrix_multiply_kernel = """
__global__ void matrix_multiply(float *A, float *B, float *C, int N) {
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (row < N && col < N) {
float value = 0;
for (int k = 0; k < N; ++k) {
value += A[row * N + k] * B[k * N + col];
}
C[row * N + col] = value;
}
}
"""
def matrix_multiply_example(N):
kernel = KernelExecutor()
memory_manager = MemoryManager()
context_manager = CudaContextManager()
context_manager.initialize_context()
try:
# Host arrays
A = np.random.rand(N, N).astype(np.float32)
B = np.random.rand(N, N).astype(np.float32)
C = np.zeros((N, N), dtype=np.float32)
# Compile the kernel
compiled_kernel = kernel.compile_kernel(matrix_multiply_kernel, 'matrix_multiply')
# Allocate memory on the device
d_A = memory_manager.allocate_device_array(A.shape, dtype=np.float32)
d_B = memory_manager.allocate_device_array(B.shape, dtype=np.float32)
d_C = memory_manager.allocate_device_array(C.shape, dtype=np.float32)
# Copy data to device
memory_manager.copy_to_device(A, d_A)
memory_manager.copy_to_device(B, d_B)
# Configure grid and block sizes
block_size = 16
grid_size = (N + block_size - 1) // block_size
# Launch the kernel
kernel.launch_kernel(
compiled_kernel,
(grid_size, grid_size, 1),
(block_size, block_size, 1),
d_A, d_B, d_C, np.int32(N)
)
# Error checking
error_checker = CudaErrorChecker()
error_checker.check_errors()
# Copy the result back to the host
memory_manager.copy_to_host(d_C, C)
return C
finally:
# Finalize the context
context_manager.finalize_context()
if __name__ == "__main__":
N = 512
result = matrix_multiply_example(N)
print(f"Matrix multiplication result (first 5x5 elements):\n{result[:5, :5]}")import numpy as np
from pycuda_plus.core.kernel import KernelExecutor
from pycuda_plus.core.memory import MemoryManager
from pycuda_plus.core.grid_block import GridBlockConfig
from pycuda_plus.core.profiler import PerformanceProfiler
from pycuda_plus.core.context import CudaContextManager
matrix_addition_kernel = """
__global__ void matrix_add(float *A, float *B, float *C, int rows, int cols) {
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (row < rows && col < cols) {
int idx = row * cols + col;
C[idx] = A[idx] + B[idx];
}
}
"""
def matrix_addition_with_profiling(rows, cols):
kernel_executor = KernelExecutor()
memory_manager = MemoryManager()
grid_config = GridBlockConfig(threads_per_block=256)
profiler = PerformanceProfiler()
context_manager = CudaContextManager()
context_manager.initialize_context()
try:
A = np.random.rand(rows, cols).astype(np.float32)
B = np.random.rand(rows, cols).astype(np.float32)
C = np.zeros((rows, cols), dtype=np.float32)
d_A = memory_manager.allocate_device_array(A.shape, dtype=np.float32)
d_B = memory_manager.allocate_device_array(B.shape, dtype=np.float32)
d_C = memory_manager.allocate_device_array(C.shape, dtype=np.float32)
memory_manager.copy_to_device(A, d_A)
memory_manager.copy_to_device(B, d_B)
compiled_kernel = kernel_executor.compile_kernel(matrix_addition_kernel, 'matrix_add')
total_elements = rows * cols
grid, block = grid_config.auto_config(total_elements)
grid = (grid[0], grid[0], 1)
block = (block[0], 1, 1)
execution_time = profiler.profile_kernel(
compiled_kernel, grid, block, d_A, d_B, d_C, np.int32(rows), np.int32(cols)
)
print(f"Matrix addition kernel execution time: {execution_time:.6f} seconds")
memory_manager.copy_to_host(d_C, C)
return C
finally:
context_manager.finalize_context()
if __name__ == "__main__":
rows, cols = 1024, 1024
result = matrix_addition_with_profiling(rows, cols)
print(f"Matrix addition result (first 5x5 elements):\n{result[:5, :5]}")import numpy as np
from pycuda_plus.core.memory import MemoryManager
from pycuda_plus.utils.numpy_support import NumpyHelper
from pycuda_plus.core.context import CudaContextManager
def example_using_numpy_helper(N):
# Instantiate required components
memory_manager = MemoryManager()
numpy_helper = NumpyHelper() # We'll keep this in case we need other helper functions
context_manager = CudaContextManager()
# Initialize the CUDA context
context_manager.initialize_context()
try:
# Create an array on the host
host_array1 = np.random.rand(N).astype(np.float32)
host_array2 = np.random.rand(N).astype(np.float32)
# Generate a patterned array using NumpyHelper (e.g., a range array)
d_patterned_array = numpy_helper.generate_patterned_array((N,), 'range')
patterned_array = numpy_helper.batch_copy_to_host([d_patterned_array])[0]
# Batch copy arrays to device memory using NumpyHelper
d_array1, d_array2 = numpy_helper.batch_copy_to_device([host_array1, host_array2])
# Print some results
print("Patterned array (first 10 elements):", patterned_array[:10])
print("Host Array 1 (first 10 elements):", host_array1[:10])
print("Host Array 2 (first 10 elements):", host_array2[:10])
# Return the arrays for further use if needed
return {
"patterned_array": patterned_array[:10],
"host_array1": host_array1[:10],
"host_array2": host_array2[:10],
}
finally:
# Finalize CUDA context
context_manager.finalize_context()
if __name__ == "__main__":
N = 10000 # Array size
results = example_using_numpy_helper(N)
# Print results
print("Patterned array (first 10 elements):", results["patterned_array"])
print("Host Array 1 (first 10 elements):", results["host_array1"])
print("Host Array 2 (first 10 elements):", results["host_array2"])-
KernelExecutor- Compile and launch CUDA kernels.
- Example:
kernel_executor = KernelExecutor() compiled_kernel = kernel_executor.compile_kernel(kernel_code, kernel_name) kernel_executor.launch_kernel(compiled_kernel, grid, block, *args)
-
MemoryManager- Allocate, manage, and transfer memory between host and device.
- Example:
memory_manager = MemoryManager() device_array = memory_manager.allocate_device_array(shape, dtype) memory_manager.copy_to_device(host_array, device_array) memory_manager.copy_to_host(device_array, host_array)
-
CudaContextManager- Simplify CUDA context setup and teardown.
- Example:
context_manager = CudaContextManager() context_manager.initialize_context() context_manager.finalize_context()
-
CudaErrorChecker- Check for CUDA errors during kernel execution.
- Example:
error_checker = CudaErrorChecker() error_checker.check_errors()
-
GridBlockConfig- Automate grid and block size calculation.
- Example:
grid_config = GridBlockConfig(threads_per_block=256) grid, block = grid_config.auto_config(shape) print(f"Grid: {grid}, Block: {block}")
-
PerformanceProfiler- Measure execution time of CUDA kernels.
- Example:
profiler = PerformanceProfiler() execution_time = profiler.profile_kernel(kernel, grid, block, *args) print(f"Kernel execution time: {execution_time:.6f} seconds")
numpy_support: Provides advanced utilities for integrating NumPy arrays with CUDA device memory.prebuilt_kernels: Access to commonly used CUDA kernels.grid_block: Helpers for calculating grid and block dimensions.profiler: Tools for profiling CUDA kernel execution.visualization: Tools for visualizing GPU memory usage, kernel performance, and grid/block configurations.
Contributions are welcome! Please open issues or submit pull requests on the GitHub repository.
PyCUDA Plus is licensed under the MIT License. See the LICENSE file for details.
Built on the foundation of PyCUDA, with additional utilities for enhanced usability and performance.