Skip to content

Conversation

@bingxinhu
Copy link

@bingxinhu bingxinhu commented May 19, 2023

nuscenes-mini

1.基本环境安装
conda create -n fastbev python=3.8
conda activate fastbev
pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

安装mmcv-full安装时终端会卡住,不是卡住,是下载时间比较长,耐心等待

pip install mmcv-full==1.4.0

安装mmdet

pip install mmdet==2.14.0

安装mmdet

pip install mmsegmentation==0.14.1

2.下载fastbev工程
git clone https://github.com/Sense-GVT/Fast-BEV.git

激活虚拟环境

conda activate fastbev

conda install setuptools==58.0.4

进入Fast-BEV

cd Fast-BEV

配置所需依赖包

pip install -v -e .

or "python setup.py develop"

3.查看版本
python -c 'import mmcv;import mmdet;import mmdet3d;import mmseg;print(mmcv.version);print(mmdet.version);print(mmdet3d.version);print(mmseg.version)'
image

4.准备数据集
5.数据集转换为FastBEV支持格式
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes --workers 10 --version v1.0-mini
生成索引
python tools/data_converter/nuscenes_seq_converter.py
分布式训练
python tools/train.py configs/fastbev/exp/paper/fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.py --work-dir work_dir --gpu-ids 0
PC单卡训练
dist_train.sh configs/fastbev/exp/paper/fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.py 1
推理测试
python tools/test.py configs/fastbev/exp/paper/fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.py pretrained_models/epoch_20.pth --out output/result.pkl
可视化
python tools/misc/visualize_results.py configs/fastbev/exp/paper/fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.py --result output/result.pkl --show-dir show_dir

具体详细操作参见
https://blog.csdn.net/h904798869/article/details/130317240

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant