Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
278 changes: 278 additions & 0 deletions models/ministral3.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
[
{
"uniqueID": "mistralai/Ministral-3-14B-Instruct-2512",
"name": "Ministral-3-14B-Instruct-2512",
"description": "Ministral 3 14B is a high-performance, instruction-tuned language model with vision capabilities, delivering frontier-level results comparable to larger models. Post-trained in FP8, it is optimized for chat and instruction-based tasks. Designed for efficient edge deployment, it runs across a wide range of hardware. It fits locally within 24GB VRAM in FP8 and even less with further quantization.",
"added": "2025-12-06",
"tags": [],
"parameters": "14B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-14B-Instruct-2512",
"transformers_version": "5.0.0.dev0",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does this work with the version of transformers we have?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I tried it with vLLM server plugin and it worked with it, The fastchat server doesn't have support for it yet.

"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 30028.735153198242,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512",
"paperUrl": "?"
},
"model_group": "mistral"
},
{
"uniqueID": "mistralai/Ministral-3-8B-Instruct-2512",
"name": "Ministral-3-8B-Instruct-2512",
"description": "Ministral 3 8B is a balanced, efficient language model with vision capabilities, designed for strong performance at a compact scale. Instruction-tuned in FP8, it excels at chat and instruction-following tasks. Built for edge deployment, it runs smoothly across diverse hardware setups. It fits locally within 12GB VRAM in FP8, with even lower requirements when further quantized.",
"added": "2025-12-06",
"tags": [],
"parameters": "8B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-8B-Instruct-2512",
"transformers_version": "5.0.0.dev0",
"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 19908.187615394592,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512",
"paperUrl": "?"
},
"model_group": "mistral"
},
{
"uniqueID": "mistralai/Ministral-3-3B-Instruct-2512",
"name": "Ministral-3-3B-Instruct-2512",
"description": "Ministral 3 3B is the smallest and most lightweight model in the family, offering efficient performance with vision capabilities. Instruction-tuned in FP8, it is well suited for chat and instruction-following tasks. Optimized for edge deployment, it runs on a wide range of hardware. It fits locally within 8GB VRAM in FP8, with lower requirements through further quantization.",
"added": "2025-12-06",
"tags": [],
"parameters": "3B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-3B-Instruct-2512",
"transformers_version": "5.0.0.dev0",
"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 8943.600494384766,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512",
"paperUrl": "?"
},
"model_group": "mistral"
},
{
"uniqueID": "mistralai/Ministral-3-14B-Reasoning-2512",
"name": "Ministral-3-14B-Reasoning-2512",
"description": "Ministral 3 14B is the largest model in the family, delivering frontier-level performance comparable to much larger models. Post-trained for reasoning, it excels in math, coding, and STEM-focused tasks. Designed for efficient edge deployment, it runs across a wide range of hardware. It fits locally within 32GB VRAM in BF16, or under 24GB RAM/VRAM when quantized.",
"added": "2025-12-06",
"tags": [
"Reasoning"
],
"parameters": "14B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-14B-Reasoning-2512",
"transformers_version": "5.0.0.dev0",
"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 53228.86742210388,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512",
"paperUrl": "?"
},
"model_group": "mistral"
},
{
"uniqueID": "mistralai/Ministral-3-8B-Reasoning-2512",
"name": "Ministral-3-8B-Reasoning-2512",
"description": "Ministral 3 8B is a balanced model offering strong performance with efficient compute and vision capabilities. Post-trained for reasoning, it is well suited for math, coding, and STEM applications. Built for edge deployment, it runs across a wide range of hardware. It fits locally within 24GB VRAM in BF16, or under 12GB RAM/VRAM when quantized.",
"added": "2025-12-06",
"tags": [
"Reasoning"
],
"parameters": "8B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-8B-Reasoning-2512",
"transformers_version": "5.0.0.dev0",
"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 34052.34588909149,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-8B-Reasoning-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-8B-Reasoning-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-8B-Reasoning-2512",
"paperUrl": "?"
},
"model_group": "mistral"
},
{
"uniqueID": "mistralai/Ministral-3-3B-Reasoning-2512",
"name": "Ministral-3-3B-Reasoning-2512",
"description": "Ministral 3 3B is the smallest and most lightweight model in the family, delivering efficient performance with vision capabilities. Post-trained for reasoning, it excels at math, coding, and STEM-focused tasks. Designed for edge deployment, it runs on a wide range of hardware. It fits locally within 16GB VRAM in BF16, or under 8GB RAM/VRAM when quantized.",
"added": "2025-12-06",
"tags": [
"Reasoning"
],
"parameters": "3B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-3B-Reasoning-2512",
"transformers_version": "5.0.0.dev0",
"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 14715.864577293396,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-3B-Reasoning-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-3B-Reasoning-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-3B-Reasoning-2512",
"paperUrl": "?"
},
"model_group": "mistral"
},
{
"uniqueID": "mistralai/Ministral-3-14B-Base-2512",
"name": "Ministral-3-14B-Base-2512",
"description": "Ministral 3 14B is the largest model in the family, delivering frontier-level performance comparable to much larger models. Post-trained for reasoning, it is optimized for math, coding, and STEM workloads. Built for edge deployment, it runs efficiently across a wide range of hardware. It fits locally within 32GB VRAM in BF16, or under 24GB RAM/VRAM when quantized.",
"added": "2025-12-06",
"tags": [],
"parameters": "14B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-14B-Base-2512",
"transformers_version": "5.0.0.dev0",
"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 53228.86742210388,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-14B-Base-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-14B-Base-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-14B-Base-2512",
"paperUrl": "?"
},
"model_group": "mistral"
},
{
"uniqueID": "mistralai/Ministral-3-8B-Base-2512",
"name": "Ministral-3-8B-Base-2512",
"description": "Ministral 3 8B is a balanced, efficient language model with vision capabilities, designed for flexible deployment. This base pre-trained version is ideal for custom post-training and fine-tuning workflows. For chat and instruction use cases, Ministral 3 8B Instruct 2512 is recommended. It supports edge deployment and fits locally within 24GB VRAM in BF16, or under 12GB RAM/VRAM when quantized.",
"added": "2025-12-06",
"tags": [],
"parameters": "8B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-8B-Base-2512",
"transformers_version": "5.0.0.dev0",
"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 34052.34588909149,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-8B-Base-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-8B-Base-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-8B-Base-2512",
"paperUrl": "?"
},
"model_group": "mistral"
},
{
"uniqueID": "mistralai/Ministral-3-3B-Base-2512",
"name": "Ministral-3-3B-Base-2512",
"description": "Ministral 3 3B is the smallest and most lightweight model in the family, offering efficient performance with vision capabilities. This base pre-trained version is well suited for custom fine-tuning and post-training workflows. For chat and instruction use cases, Ministral 3 3B Instruct 2512 is recommended. Designed for edge deployment, it fits within 16GB VRAM in BF16, or under 8GB RAM/VRAM when quantized.",
"added": "2025-12-06",
"tags": [],
"parameters": "3B",
"context": "2048",
"architecture": "Mistral3ForConditionalGeneration",
"formats": [
"Safetensors"
],
"huggingface_repo": "mistralai/Ministral-3-3B-Base-2512",
"transformers_version": "5.0.0.dev0",
"gated": false,
"license": "apache-2.0",
"logo": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"size_of_model_in_mb": 14715.864577293396,
"author": {
"name": "mistralai",
"url": "https://huggingface.co/mistralai/Ministral-3-3B-Base-2512",
"blurb": ""
},
"resources": {
"canonicalUrl": "https://huggingface.co/mistralai/Ministral-3-3B-Base-2512",
"downloadUrl": "https://huggingface.co/mistralai/Ministral-3-3B-Base-2512",
"paperUrl": "?"
},
"model_group": "mistral"
}
]