|
| 1 | +# Model Architecture Configuration |
| 2 | + |
| 3 | +Each model artifact has an associated optional architecture configuration that describes the detailed structure and components of the model. Currently, only decoder-type transformer architectures are supported. Future extensions will include: |
| 4 | + |
| 5 | +- Multi-modal language models |
| 6 | +- State Space Models |
| 7 | +- Diffusion Models |
| 8 | + |
| 9 | +## Terminology |
| 10 | + |
| 11 | +The transformer is the most popular architecture for LLMs. It consists of a stack of structured layers, where each layer contains a self-attention block and a feed-forward network, with normalization layers and residual connections. The complete architecture includes a tokenizer, input embedding layer, position embedding layer, transformer layers, and output embedding layer. The transformer architecture has remained relatively stable since [Attention is all you need][attention-paper]. As shown in the table below, current open-weight model architectures are converging, making it feasible to define a common abstraction. |
| 12 | + |
| 13 | +| Model | Tokenizer | PE | Self-Attention | Norm | Feed-Forward | Residual | |
| 14 | +|---------------------------------|-----------|------------|----------------|------------|--------------|----------| |
| 15 | +| [GPT2][gpt2-repo] | BPE | Sinusoidal | MHA | Layer Norm | MLP | Yes | |
| 16 | +| [Llama2][llama2-paper] | BPE | RoPE | GQA | RMS Norm | MLP | Yes | |
| 17 | +| [Llama3][llama3-paper] | BPE | RoPE | GQA | RMS Norm | MLP | Yes | |
| 18 | +| [Qwen2][qwen2-paper] | BPE | RoPE | GQA | RMS Norm | MoE | Yes | |
| 19 | +| [Qwen3][qwen3-paper] | BPE | RoPE | GQA | RMS Norm | MoE | Yes | |
| 20 | +| [Gemma2][gemma2-paper] | BPE | RoPE | GQA | RMS Norm | MLP | Yes | |
| 21 | +| [Gemma3][gemma3-paper] | BPE | RoPE | GQA | RMS Norm | MLP | Yes | |
| 22 | +| [Mixtral][mixtral-paper] | BPE | RoPE | SWA | RMS Norm | MoE | Yes | |
| 23 | +| [DeepseekV2][deepseek-v2-paper] | BPE | RoPE | MLA | RMS Norm | MoE | Yes | |
| 24 | +| [DeepseekV3][deepseek-v3-paper] | BPE | RoPE | MLA | RMS Norm | MoE | Yes | |
| 25 | +| [Kimi-K2][kimi-k2-paper] | BPE | RoPE | MLA | RMS Norm | MoE | Yes | |
| 26 | + |
| 27 | +*Note: Each model represents the largest variant within its respective series.* |
| 28 | + |
| 29 | + |
| 30 | +## Properties |
| 31 | + |
| 32 | +- **transformer** _object_, REQUIRED |
| 33 | + |
| 34 | + Contains the transformer configuration parameters. |
| 35 | + |
| 36 | + - **architecture_version** _string_, REQUIRED |
| 37 | + |
| 38 | + The version of the transformer architecture configuration using semantic versioning. An independent version is required for future extensibility. |
| 39 | + |
| 40 | + - **type** _string_, REQUIRED |
| 41 | + |
| 42 | + The type of transformer architecture. Currently supported: `decoder`. The default is `decoder`. |
| 43 | + |
| 44 | + - **vocabulary_size** _uint64_, REQUIRED |
| 45 | + |
| 46 | + Vocabulary size of the model. |
| 47 | + |
| 48 | + - **hidden_size** _uint64_, REQUIRED |
| 49 | + |
| 50 | + The hidden size of the model. |
| 51 | + |
| 52 | + - **tokenizer** _object_, REQUIRED |
| 53 | + |
| 54 | + Contains the tokenizer configuration parameters. |
| 55 | + |
| 56 | + - **type** _string_, REQUIRED |
| 57 | + |
| 58 | + Tokenizer type. Currently supported: `bpe`. The default is `bpe`. |
| 59 | + |
| 60 | + - **library** _string_, REQUIRED |
| 61 | + |
| 62 | + The name or URL of the tokenizer library. Currently supported: `huggingface`. The default is `huggingface`. |
| 63 | + |
| 64 | + - **revision** _string_, OPTIONAL |
| 65 | + |
| 66 | + Revision of the tokenizer library. Can be a branch name, tag name, commit ID, or `main` (latest version). The default is `main`. |
| 67 | + |
| 68 | + - **token_embedding** _object_, REQUIRED |
| 69 | + |
| 70 | + Contains the token embedding configuration parameters. |
| 71 | + |
| 72 | + - **has_bias** _boolean_, REQUIRED |
| 73 | + |
| 74 | + Whether the embedding has a bias. The default is `false`. |
| 75 | + |
| 76 | + - **has_norm** _boolean_, REQUIRED |
| 77 | + |
| 78 | + Whether the embedding has a normalization. The default is `true`. The normalization configuration is defined in the normalization property. |
| 79 | + |
| 80 | + - **shared_embedding** _boolean_, REQUIRED |
| 81 | + |
| 82 | + Whether the embedding is shared with the model prediction head. The default is `false`. |
| 83 | + |
| 84 | + - **position_embedding** _object_, REQUIRED |
| 85 | + |
| 86 | + Contains the position embedding configuration parameters. |
| 87 | + |
| 88 | + - **type** _string_, REQUIRED |
| 89 | + |
| 90 | + Position embedding type. Currently supported: `rope`. The default is `rope`. For more details, see [RoPE][rope-paper] and its [PyTorch implementation][rope-pytorch]. |
| 91 | + |
| 92 | + - **max_position_embeddings** _uint64_, REQUIRED |
| 93 | + |
| 94 | + The maximum number of position embeddings. The default is `1024`. |
| 95 | + |
| 96 | + - **rope_theta** _float_, REQUIRED |
| 97 | + |
| 98 | + The theta parameter in the RoPE position embedding. The default is `10000`. |
| 99 | + |
| 100 | + - **rope_scaling** _object_, OPTIONAL |
| 101 | + |
| 102 | + The scaling configuration for the RoPE embeddings. The default is `null`. |
| 103 | + |
| 104 | + - **transformer_layer** _object_, REQUIRED |
| 105 | + |
| 106 | + Contains the transformer layer configuration parameters. Must specify either uniform_layers or mixed_layers. |
| 107 | + |
| 108 | + - **uniform_layers** _object_, OPTIONAL |
| 109 | + |
| 110 | + Configuration for uniform layers where all layers have identical structure. |
| 111 | + |
| 112 | + - **num_layers** _uint64_, REQUIRED |
| 113 | + |
| 114 | + Number of transformer layers. The default is `0`. |
| 115 | + |
| 116 | + - **attention** _object_, REQUIRED |
| 117 | + |
| 118 | + Contains the attention configuration parameters. |
| 119 | + |
| 120 | + - **type** _string_, REQUIRED |
| 121 | + |
| 122 | + Attention mechanism type. Currently supported: [MHA][mha-paper], [GQA][gqa-paper], [MLA][mla-paper]. The default is `mha`. |
| 123 | + |
| 124 | + - **is_causal** _boolean_, REQUIRED |
| 125 | + |
| 126 | + Whether the attention is causal. The default is `true`. |
| 127 | + |
| 128 | + - **is_qkv_merged** _boolean_, REQUIRED |
| 129 | + |
| 130 | + Whether the QKV projection is merged. The default is `false`. |
| 131 | + |
| 132 | + - **num_attention_heads** _uint64_, REQUIRED |
| 133 | + |
| 134 | + Number of attention heads. The default is `0`. |
| 135 | + |
| 136 | + - **num_key_value_heads** _uint64_, REQUIRED |
| 137 | + |
| 138 | + Number of key-value heads. The default is `0`. |
| 139 | + |
| 140 | + - **head_dim** _uint64_, REQUIRED |
| 141 | + |
| 142 | + The attention head dimension. If 0, defaults to hidden_size / num_attention_heads. The default is `0`. |
| 143 | + |
| 144 | + - **has_residual** _boolean_, REQUIRED |
| 145 | + |
| 146 | + Whether the attention has a residual connection. The default is `true`. |
| 147 | + |
| 148 | + - **has_qkv_bias** _boolean_, REQUIRED |
| 149 | + |
| 150 | + Whether the QKV projection has a bias. The default is `false`. |
| 151 | + |
| 152 | + - **has_output_bias** _boolean_, REQUIRED |
| 153 | + |
| 154 | + Whether the output projection has a bias. The default is `false`. |
| 155 | + |
| 156 | + - **has_pre_norm** _boolean_, REQUIRED |
| 157 | + |
| 158 | + Whether the attention has a pre-normalization. The default is `false`. |
| 159 | + |
| 160 | + - **has_post_norm** _boolean_, REQUIRED |
| 161 | + |
| 162 | + Whether the attention has a post-normalization. The default is `false`. |
| 163 | + |
| 164 | + - **mlp** _object_, OPTIONAL |
| 165 | + |
| 166 | + MLP configuration parameters. Either mlp or moe must be specified. |
| 167 | + |
| 168 | + - **intermediate_size** _uint64_, REQUIRED |
| 169 | + |
| 170 | + The size of the intermediate layer. The default is `0`. |
| 171 | + |
| 172 | + - **activation** _string_, REQUIRED |
| 173 | + |
| 174 | + The activation function. The default is `gelu`. |
| 175 | + |
| 176 | + - **use_gated_activation** _boolean_, REQUIRED |
| 177 | + |
| 178 | + Whether to use gated activation. The default is `true`. |
| 179 | + |
| 180 | + - **has_residual** _boolean_, REQUIRED |
| 181 | + |
| 182 | + Whether the MLP has a residual connection. The default is `true`. |
| 183 | + |
| 184 | + - **has_bias** _boolean_, REQUIRED |
| 185 | + |
| 186 | + Whether the MLP has a bias. The default is `false`. |
| 187 | + |
| 188 | + - **has_pre_norm** _boolean_, REQUIRED |
| 189 | + |
| 190 | + Whether the MLP has a pre-normalization. The default is `false`. |
| 191 | + |
| 192 | + - **has_post_norm** _boolean_, REQUIRED |
| 193 | + |
| 194 | + Whether the MLP has a post-normalization. The default is `false`. |
| 195 | + |
| 196 | + - **is_mlp_merged** _boolean_, REQUIRED |
| 197 | + |
| 198 | + Whether the MLP projection is merged. The default is `false`. |
| 199 | + |
| 200 | + - **moe** _object_, OPTIONAL |
| 201 | + |
| 202 | + MoE configuration parameters. |
| 203 | + |
| 204 | + - **has_bias** _boolean_, REQUIRED |
| 205 | + |
| 206 | + Whether the MOE has a bias. The default is `false`. |
| 207 | + |
| 208 | + - **activation** _string_, REQUIRED |
| 209 | + |
| 210 | + The activation function. The default is `gelu`. |
| 211 | + |
| 212 | + - **use_gated_activation** _boolean_, REQUIRED |
| 213 | + |
| 214 | + Whether to use gated activation. The default is `true`. |
| 215 | + |
| 216 | + - **num_experts** _uint64_, REQUIRED |
| 217 | + |
| 218 | + Number of experts. The default is `0`. |
| 219 | + |
| 220 | + - **moe_intermediate_size** _uint64_, REQUIRED |
| 221 | + |
| 222 | + The size of the intermediate layer of the routed expert. The default is `0`. |
| 223 | + |
| 224 | + - **num_shared_experts** _uint64_, REQUIRED |
| 225 | + |
| 226 | + Number of shared experts. The default is `0`. |
| 227 | + |
| 228 | + - **shared_expert_intermediate_size** _uint64_, REQUIRED |
| 229 | + |
| 230 | + The size of the intermediate layer of the shared expert. The default is `0`. |
| 231 | + |
| 232 | + - **top_k** _uint64_, REQUIRED |
| 233 | + |
| 234 | + Top k experts to be used. The default is `0`. |
| 235 | + |
| 236 | + - **scoring_function** _string_, REQUIRED |
| 237 | + |
| 238 | + Method of computing expert weights. The default is `softmax`. |
| 239 | + |
| 240 | + - **norm_topk_prob** _boolean_, REQUIRED |
| 241 | + |
| 242 | + Whether to normalize the top k probabilities. The default is `false`. |
| 243 | + |
| 244 | + - **mixed_layers** _object_, OPTIONAL |
| 245 | + |
| 246 | + Configuration for mixed layers where layers have different structures. |
| 247 | + |
| 248 | + - **num_layers** _uint64_, REQUIRED |
| 249 | + |
| 250 | + Number of transformer layers. The default is `0`. |
| 251 | + |
| 252 | + - **mlp_layers** _array_, REQUIRED |
| 253 | + |
| 254 | + Layers that use MLP. If empty, moe_frequency determines sparsity. The default is `[]`. |
| 255 | + |
| 256 | + - **pre_norm_layers** _array_, OPTIONAL |
| 257 | + |
| 258 | + Layers that use pre-normalization. The default is `[]`. |
| 259 | + |
| 260 | + - **post_norm_layers** _array_, OPTIONAL |
| 261 | + |
| 262 | + Layers that use post-normalization. The default is `[]`. |
| 263 | + |
| 264 | + - **moe_frequency** _uint64_, REQUIRED |
| 265 | + |
| 266 | + Frequency of the MoE layer. The default is `0`. |
| 267 | + |
| 268 | + - **attention** _object_, REQUIRED |
| 269 | + |
| 270 | + Attention parameters (same structure as in uniform_layers). |
| 271 | + |
| 272 | + - **mlp** _object_, OPTIONAL |
| 273 | + |
| 274 | + MLP parameters (same structure as in uniform_layers). |
| 275 | + |
| 276 | + - **moe** _object_, OPTIONAL |
| 277 | + |
| 278 | + MoE parameters (same structure as in uniform_layers). |
| 279 | + |
| 280 | + - **normalization** _object_, REQUIRED |
| 281 | + |
| 282 | + Contains the normalization configuration parameters. |
| 283 | + |
| 284 | + - **type** _string_, REQUIRED |
| 285 | + |
| 286 | + Normalization type. Supported: [`RMSNorm`][rmsnorm-paper], [`LayerNorm`][layernorm-paper]. The default is `rmsnorm`. |
| 287 | + |
| 288 | + - **epsilon** _float_, REQUIRED |
| 289 | + |
| 290 | + Epsilon for the normalization. The default is `1e-5`. |
| 291 | + |
| 292 | +## Example |
| 293 | + |
| 294 | +Here is an example transformer architecture configuration: |
| 295 | + |
| 296 | +```json,title=Transformer%20Architecture%20Configuration&mediatype=application/vnd.cncf.model.architecture.v1%2Bjson |
| 297 | +{ |
| 298 | + "transformer": { |
| 299 | + "vocabulary_size": 32000, |
| 300 | + "hidden_size": 4096, |
| 301 | + "tokenizer": { |
| 302 | + "type": "bpe", |
| 303 | + "library": "huggingface", |
| 304 | + "revision": "main" |
| 305 | + }, |
| 306 | + "token_embedding": { |
| 307 | + "has_bias": false, |
| 308 | + "has_norm": true, |
| 309 | + "shared_embedding": false |
| 310 | + }, |
| 311 | + "position_embedding": { |
| 312 | + "type": "rope", |
| 313 | + "max_position_embeddings": 2048, |
| 314 | + "rope_theta": 10000.0, |
| 315 | + "rope_scaling": null |
| 316 | + }, |
| 317 | + "transformer_layer": { |
| 318 | + "uniform_layers": { |
| 319 | + "num_layers": 32, |
| 320 | + "attention": { |
| 321 | + "type": "gqa", |
| 322 | + "is_causal": true, |
| 323 | + "is_qkv_merged": false, |
| 324 | + "num_attention_heads": 32, |
| 325 | + "num_key_value_heads": 8, |
| 326 | + "head_dim": 128, |
| 327 | + "has_residual": true, |
| 328 | + "has_qkv_bias": false, |
| 329 | + "has_output_bias": false, |
| 330 | + "has_pre_norm": true, |
| 331 | + "has_post_norm": false |
| 332 | + }, |
| 333 | + "mlp": { |
| 334 | + "intermediate_size": 11008, |
| 335 | + "activation": "silu", |
| 336 | + "use_gated_activation": true, |
| 337 | + "has_residual": true, |
| 338 | + "has_bias": false, |
| 339 | + "has_pre_norm": false, |
| 340 | + "has_post_norm": true, |
| 341 | + "is_mlp_merged": false |
| 342 | + } |
| 343 | + } |
| 344 | + }, |
| 345 | + "normalization": { |
| 346 | + "type": "rmsnorm", |
| 347 | + "epsilon": 1e-5 |
| 348 | + } |
| 349 | + } |
| 350 | +} |
| 351 | +``` |
| 352 | + |
| 353 | +[attention-paper]: https://arxiv.org/abs/1706.03762 |
| 354 | +[gpt2-repo]: https://github.com/openai/gpt-2 |
| 355 | +[llama2-paper]: https://arxiv.org/abs/2307.09288 |
| 356 | +[llama3-paper]: https://arxiv.org/abs/2407.21783 |
| 357 | +[qwen2-paper]: https://arxiv.org/abs/2407.10671 |
| 358 | +[qwen3-paper]: https://arxiv.org/pdf/2505.09388 |
| 359 | +[gemma2-paper]: https://arxiv.org/abs/2408.00118 |
| 360 | +[gemma3-paper]: https://arxiv.org/pdf/2503.19786 |
| 361 | +[mixtral-paper]: https://arxiv.org/abs/2401.04088 |
| 362 | +[deepseek-v2-paper]: https://arxiv.org/abs/2405.04434 |
| 363 | +[deepseek-v3-paper]: https://arxiv.org/pdf/2412.19437 |
| 364 | +[kimi-k2-paper]: https://arxiv.org/pdf/2507.20534 |
| 365 | +[rope-paper]: https://arxiv.org/abs/2104.09864 |
| 366 | +[rope-pytorch]: https://pytorch.org/torchtune/stable/generated/torchtune.modules.RotaryPositionalEmbeddings.html |
| 367 | +[mha-paper]: https://arxiv.org/abs/1706.03762 |
| 368 | +[gqa-paper]: https://arxiv.org/abs/2305.13245v3 |
| 369 | +[mla-paper]: https://arxiv.org/abs/2412.19437 |
| 370 | +[rmsnorm-paper]: https://arxiv.org/abs/1910.07467 |
| 371 | +[layernorm-paper]: https://arxiv.org/abs/1607.06450 |
0 commit comments