diff --git a/units/en/unit1/4.mdx b/units/en/unit1/4.mdx index 2c24bf0..317d7d3 100644 --- a/units/en/unit1/4.mdx +++ b/units/en/unit1/4.mdx @@ -29,7 +29,7 @@ Here are different ways to set up temporal windows depending on your use case. S ```python # Simple: current observation → current action delta_timestamps = { - "observation.images.wrist_camera": [0.0], # Just current frame + "observation.images.side": [0.0], # Just current frame "action": [0.0] # Just current action } @@ -47,7 +47,7 @@ dataset = LeRobotDataset( ```python # Use observation history for context delta_timestamps = { - "observation.images.wrist_camera": [-0.2, -0.1, 0.0], # 200ms history + "observation.images.side": [-0.2, -0.1, 0.0], # 200ms history "action": [0.0] # Current action } @@ -69,7 +69,7 @@ sample = dataset[100] ```python # Predict multiple future actions at once delta_timestamps = { - "observation.images.wrist_camera": [-0.1, 0.0], # Recent + current + "observation.images.side": [-0.1, 0.0], # Recent + current "action": [0.0, 0.1, 0.2, 0.3] # Current + 3 future actions } @@ -157,7 +157,7 @@ for batch in dataloader: # Move to device observations = batch["observation.state"].to(device) actions = batch["action"].to(device) - images = batch["observation.images.wrist_camera"].to(device) + images = batch["observation.images.side"].to(device) # Your model training here # loss = model(observations, images, actions)