Skip to content

Add Multivariate Functional PCA (not FPCA) #677

@dani2442

Description

@dani2442

Motivation

I am studying the multivariate FPCA framework presented by Berrendero et al. (2011) [1]. Unlike conventional FPCA or mFPCA approaches, it does not rely on the Karhunen–Loève expansion. Instead, this method compresses functions $L^2(\mathbb{R}, \mathbb{R}^p)$ into $L^2(\mathbb{R}, \mathbb{R}^k)$ where $k \ll p$, whereas the other approaches [2,3,4] compress the signal into a finite-dimensional space.

Also, I would like to volunteer to implement this method.

[1] Berrendero, J. R. et al. (Sept. 2011). “Principal components for multivariate functional data”. In:
Computational Statistics & Data Analysis 55.9, pp. 2619–2634. issn: 0167-9473. doi: 10.1016/
j . csda . 2011 . 03 . 011. url: https : / / www . sciencedirect . com / science / article / pii /
S0167947311001022 (visited on 04/10/2025).
[2] Chiou, Jeng-Min et al. (2014). “Multivariate Functional Principal Component Analysis: A Nor-
malization Approach”. In: Statistica Sinica 24.4. Publisher: Institute of Statistical Science,
Academia Sinica, pp. 1571–1596. issn: 1017-0405. url: https://www.jstor.org/stable/
24310959 (visited on 04/10/2025).
[3] Jacques, Julien et al. (2014). “Model-based clustering for multivariate functional data”. In: Com-
putational Statistics & Data Analysis 71.C. Publisher: Elsevier, pp. 92–106. issn: 0167-9473.
doi: 10.1016/j.csda.2012.12.004. url: https://EconPapers.repec.org/RePEc:eee:
csdana:v:71:y:2014:i:c:p:92-106 (visited on 04/19/2025).
[4] Ramsay, J. O. et al. (2005). Functional Data Analysis. en. Springer Series in Statistics. New York,
NY: Springer. isbn: 978-0-387-40080-8 978-0-387-22751-1. doi: 10.1007/b98888. url: http:
//link.springer.com/10.1007/b98888 (visited on 04/19/2025).

Desired functionality

Implement the F2FPCA (Functional-to-Functional PCA) class—note: while there is no established naming convention, I suggest this name—within the dim_reduction folder. The implementation should follow the structure of the original FPCA class and include the following methods:

  • fit
  • transform
  • inverse_transform

Alternatives

No response

Additional context

No response

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions