-
Notifications
You must be signed in to change notification settings - Fork 63
Description
Motivation
I am studying the multivariate FPCA framework presented by Berrendero et al. (2011) [1]. Unlike conventional FPCA or mFPCA approaches, it does not rely on the Karhunen–Loève expansion. Instead, this method compresses functions
Also, I would like to volunteer to implement this method.
[1] Berrendero, J. R. et al. (Sept. 2011). “Principal components for multivariate functional data”. In:
Computational Statistics & Data Analysis 55.9, pp. 2619–2634. issn: 0167-9473. doi: 10.1016/
j . csda . 2011 . 03 . 011. url: https : / / www . sciencedirect . com / science / article / pii /
S0167947311001022 (visited on 04/10/2025).
[2] Chiou, Jeng-Min et al. (2014). “Multivariate Functional Principal Component Analysis: A Nor-
malization Approach”. In: Statistica Sinica 24.4. Publisher: Institute of Statistical Science,
Academia Sinica, pp. 1571–1596. issn: 1017-0405. url: https://www.jstor.org/stable/
24310959 (visited on 04/10/2025).
[3] Jacques, Julien et al. (2014). “Model-based clustering for multivariate functional data”. In: Com-
putational Statistics & Data Analysis 71.C. Publisher: Elsevier, pp. 92–106. issn: 0167-9473.
doi: 10.1016/j.csda.2012.12.004. url: https://EconPapers.repec.org/RePEc:eee:
csdana:v:71:y:2014:i:c:p:92-106 (visited on 04/19/2025).
[4] Ramsay, J. O. et al. (2005). Functional Data Analysis. en. Springer Series in Statistics. New York,
NY: Springer. isbn: 978-0-387-40080-8 978-0-387-22751-1. doi: 10.1007/b98888. url: http:
//link.springer.com/10.1007/b98888 (visited on 04/19/2025).
Desired functionality
Implement the F2FPCA (Functional-to-Functional PCA) class—note: while there is no established naming convention, I suggest this name—within the dim_reduction folder. The implementation should follow the structure of the original FPCA class and include the following methods:
fittransforminverse_transform
Alternatives
No response
Additional context
No response